Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Flexible array curvature and sound speed estimations with a maximum spatial lag-one coherence metricOraevsky, Alexander A; Wang, Lihong V (Ed.)
-
Flexible array transducer for photoacoustic-guided interventions: phantom and ex vivo demonstrationsPhotoacoustic imaging has demonstrated recent promise for surgical guidance, enabling visualization of tool tips during surgical and non-surgical interventions. To receive photoacoustic signals, most conventional transducers are rigid, while a flexible array is able to deform and provide complete contact on surfaces with different geometries. In this work, we present photoacoustic images acquired with a flexible array transducer in multiple concave shapes in phantom andex vivobovine liver experiments targeted toward interventional photoacoustic applications. We validate our image reconstruction equations for known sensor geometries with simulated data, and we provide empirical elevation field-of-view, target position, and image quality measurements. The elevation field-of-view was 6.08 mm at a depth of 4 cm and greater than 13 mm at a depth of 5 cm. The target depth agreement with ground truth ranged 98.35-99.69%. The mean lateral and axial target sizes when imaging 600μm-core-diameter optical fibers inserted within the phantoms ranged 0.98-2.14 mm and 1.61-2.24 mm, respectively. The mean ± one standard deviation of lateral and axial target sizes when surrounded by liver tissue were 1.80±0.48 mm and 2.17±0.24 mm, respectively. Contrast, signal-to-noise, and generalized contrast-to-noise ratios ranged 6.92–24.42 dB, 46.50–67.51 dB, and 0.76–1, respectively, within the elevational field-of-view. Results establish the feasibility of implementing photoacoustic-guided surgery with a flexible array transducer.more » « less
-
Teherani, Ferechteh H.; Look, David C.; Rogers, David J. (Ed.)
-
Titanium nitride (TiN) is highly attractive for plasmonics and nanophotonics applications owing to its gold‐like but tunable optical properties. Its prodigious potential for plasmonics has been demonstrated on sapphire or bulk MgO. For a transformational impact, high optical quality TiN on Si is required instead, which would support the integration of nanophotonics with the complementary metal‐oxide‐semiconductor (CMOS) electronics. However, TiN grown on Si, even at elevated temperatures, lacks the optical quality needed, imposed by the large lattice mismatch between them. Here, a novel approach is reported wherein a thin MgO interlayer is inserted between TiN and Si. The improved crystalline quality enabled by MgO for TiN on Si(001) leads to a significant enhancement of the plasmonic figure of merit (FOM = −ε′/ε″) from 2.0 to 2.5 at telecommunication wavelength (peak FOM of 2.8), which is comparable to the widely accepted ultimate FOM obtained on bulk MgO grown under similar conditions. The TiN/MgO/Si structure enables the hybrid‐plasmonic‐photonic waveguide platform with sufficiently low losses, and thus long propagation lengths, for nanophotonic devices while providing additional practical advantages such as serving as a self‐aligned robust etching mask. Thus, the much‐anticipated potential of TiN on Si platform for CMOS compatible plasmonics is brought closer to reality.more » « less
An official website of the United States government
